
Trusted Types - W3C TPAC
Krzysztof Kotowicz, Google
koto@google.com

https://github.com/WICG/trusted-types
Slides: https://tinyurl.com/tttpac

https://github.com/WICG/trusted-types
https://tinyurl.com/tttpac

DOM XSS

DOM XSS is a growing, prevalent problem

 source ⇒ sink

location.hash ⇒ bar.innerHTML

● At Google, DOM XSS is already the most common XSS variant

Reasons:

● Growing complexity of client-side code
● Easy to introduce, hard to prevent & detect

DOM XSS is easy to introduce

● DOM API has ~70 sinks that can result in JavaScript execution

innerHTML, HTMLScriptElement.src, eval()

● These sinks are extremely common in applications
● DOM API “insecure by default”

(input) => document.querySelector(‘log’).innerHTML = input

● Sources far away from sinks, complex data flows (e.g. server roundtrip)
● Static checks don’t work reliably:

foo.innerHTML = bar // what is bar?

foo[(_ => "innerHTML")()] = bar

foo[k] = v

● Manual review is infeasible
● Dynamic (taint-tracking, fuzzing) has a small code coverage

DOM XSS is hard to detect

DOM XSS is hard to mitigate

● HTML Sanitization, CSP - bypasses via script gadgets

<div data-role=popup id='--><script>"use strict"

alert(1)</script>'></div>

<template is=dom-bind><div

c={{alert('1',ownerDocument.defaultView)}}

b={{set('_rootDataHost',ownerDocument.defaultView)}}>

</div></template>

● In-browser XSS filters - DOM XSS out of scope

https://github.com/google/security-research-pocs/tree/master/script-gadgets
https://www.chromium.org/developers/design-documents/xss-auditor

Addressing DOM XSS @ Google

● Stop tracking a string, leverage the type system
● https://github.com/google/safe-html-types/blob/master/doc/safehtml-typ

es.md
● Wrappers for strings, representing values known to be safe to use in

various HTML contexts and with various DOM APIs:
○ SafeHTML (I’m safe)

○ SafeURL (https://click.me)

○ TrustedResourceURL (https://i.am.a/script.js)

○ …

Safe HTML Types

https://github.com/google/safe-html-types/blob/master/doc/safehtml-types.md
https://github.com/google/safe-html-types/blob/master/doc/safehtml-types.md

● Producing the typed value is safe by construction

goog.html.SafeHtml.create(“DIV”, {“benign”: “attributes”}, “text”);

● ... or sanitization (integrate with your sanitizers, templating systems, …)

goog.html.SafeUrl.sanitize(untrustedUrl);

● or gets reviewed manually

goog.html.uncheckedconversions.safeUrlFromStringKnownToSatisfyTypeContract(

“url comes from the server response”, url);

Producing Safe HTML types

Consuming Safe HTML types

● A typed object is propagated throughout the application code
● Taint tracking not necessary
● Wrappers over DOM XSS sinks that accept only typed values

goog.dom.safe.setLocationHref(locationObj, safeURL)

● Compiler prohibits the use of native sinks

let foo = “bar”; location.href = foo

Compile error!

● DOM is secure by default
● Only the code producing a safe type can introduce XSS
● Reduce the security-relevant code by orders of magnitude

○ Stable components (sanitizers, templating libs)
○ Custom application code producing the types
○ Scales extremely well (<1 headcount for all of Google)

● Very successful at preventing XSS
● … as understood by the compiler

Safe HTML Types advantages

Safe HTML Types limitations

● Reliance on compilation
○ Not all code is compiled
○ Different compilation units
○ Cross-language boundaries

● Compiler limitations
○ JS type system is unsound
○ Reflection, dynamic code
○ Missing type information
○ False positive/false negative tradeoff

● No protection at runtime

Trusted Types

Trusted Types

Safe HTML types
built into the platform

Trusted Types

1. API to create string-wrapping objects of a few types:
a. TrustedHTML (.innerHTML)
b. TrustedURL (a.href)
c. TrustedScriptURL (script.src)
d. TrustedScript (el.onclick)

TrustedURL<"//foo">.toString() == "//foo"

2. Opt-in enforcement:
Make DOM XSS sinks accept only the typed objects

Trusted Types

Without enforcement:

● Use types in place of strings with no breakage
● Backwards compatible (use the light polyfill defining the types)

With enforcement:

● DOM XSS attack surface reduction - minimizing the trusted codebase
● Only the code producing the types can introduce DOM XSS
● Design facilitates limiting the “DOM XSS capability” via policies

https://github.com/WICG/trusted-types#browsers

const myPolicy = TrustedTypes.createPolicy('my-policy', {
 createHTML(html) {
 return mySanitizer(html)
 },
 createScriptURL(url) {
 const u = new URL(url, document.baseURI)
 if (u.origin === window.origin)
 return u.href;
 throw new TypeError('Invalid URL!')
 }
})

Trusted Types - policies

Name

Rules

Sanitize
HTML

Only
same
origin
scripts

Policy

Trusted Types - creating & using types

> document.body.innerHTML = myPolicy.createHTML(location.hash);
Running mySanitizer…

> document.body.innerHTML = location.hash
TypeError: HTMLBodyElement.innerHTML requires TrustedHTML assignment
(dispatch a securitypolicyviolation event?)

(function() {
 // Seemingly unsafe policy
 const unsafePolicy = TrustedTypes.createPolicy('unsafefoo', {
 createHTML: (s) => s,
 });

 // No XSS because of the usage limitation
 return fetch('/get-html')....then(
 (response) => unsafePolicy.createHTML(response)
);
})();

Trusted Types - guarding policy usage

● Only the code calling an insecure policy
can cause DOM XSS

● Policy reference similar to a CSP script
nonce

● Rest of codebase is “DOM XSS neutral”
● Enables gradual adoption with

immediate security benefits
● Example blogging application - DOM

XSS can only be caused by a Markdown
renderer.

Module

Unsafe
policy

Secure
policy

Module

Module

Module
Module

Trusted Types - guarding policy usage

https://github.com/gothinkster/react-redux-realworld-example-app/compare/master...koto:trusted-types?expand=1

Enforcement & guarding policy creation

An X-Bikeshed-Later* response header with a list of allowed policy names:

Content-Security-Policy: trusted-types foo bar

TrustedTypes.createPolicy('foo', ...) // OK
TrustedTypes.createPolicy('bar', ...) // OK
TrustedTypes.createPolicy('baz', ...) // Policy disallowed

Content-Security-Policy: trusted-types *

* For now, Content-Security-Policy

● Trusted objects can be created via policies
● A policy defines application-specific rules to create types
● Multiple policies can coexist

○ A strict HTML sanitizer for the comment editing section
○ A custom one for application templating system

● Limit policy creation
○ Response header value

● Limit policy usage
○ Guard the reference
○ Example: HTML sanitizers need a no-op policy to use internally only

Policies

Implementations:

● Chrome - http://crbug/739170, http://w3c-test.org/trusted-types/

google-chrome-unstable --enable-blink-features=TrustedDOMTypes
--enable-experimental-web-platform-features

● Polyfill - https://github.com/WICG/trusted-types
○ https://wicg.github.io/trusted-types/demo/

● Tinyfill - TrustedTypes={createPolicy:(n, rules) => rules}

Trusted Types status

http://crbug/739170
http://w3c-test.org/trusted-types/
https://github.com/WICG/trusted-types
https://wicg.github.io/trusted-types/demo/

Integration trials

● JS libraries and frameworks: DOM interpolation, templating
○ Angular, Polymer + https://github.com/Polymer/polymer-resin
○ Pug - https://github.com/mikesamuel/pug-plugin-trusted-types

● External examples:
○ Sanitizers: http://koto.github.io/DOMPurify/demos/trusted-types-demo.html
○ Angular app: gothinkster/angular-realworld-example-app - 44 lines ugly patch
○ React app gothinkster/react-redux-realworld-example-app - trivial patch

● Internally - adopting Trusted Types at Google applications

Trusted Types status

https://github.com/Polymer/polymer-resin
https://github.com/mikesamuel/pug-plugin-trusted-types/blob/master/packages/plugin/README.md
http://koto.github.io/DOMPurify/demos/trusted-types-demo.html
https://github.com/gothinkster/angular-realworld-example-app
https://pastebin.com/b7ARL7sc
https://github.com/gothinkster/react-redux-realworld-example-app
https://github.com/gothinkster/react-redux-realworld-example-app/compare/master...koto:trusted-types?expand=1

● Makes DOM XSS easy to detect & difficult to introduce
○ Based on a solution with proven track record

(most core Google applications use it)
○ Promotes containing security-relevant code
○ Power to the authors (custom rules, multiple policies)
○ Control to the security teams (policy review, header control)

● Backwards-compatible, polyfillable
● Easy to implement in UAs (1Q 2*intern project at Google)
● Extensible: more types, browser-provided policies, userland libraries

Summary

